Faire vibrer la matière à l’échelle nanométrique par un champ magnétique, c’est possible !
Des chercheurs ont montré qu’il est possible de piloter le transfert d’énergie magnétique de la lumière vers la matière grâce aux plasmons localisés, ces ondes de lumière à la surface d’un métal, qui permettent un contrôle fin des interactions lumière-matière et ouvre de nouvelles perspectives pour l’optique nanométrique.
Références
Benoît Reynier, Eric Charron, Obren Markovic, Bruno Gallas, Alban Ferrier, Sébastien Bidault and Mathieu Mivelle, Nearfield control over magnetic light-matter interactions, Light: Science & Applications (2025) 14:127 – Publié le 19 mars 2025
Doi : 10.1038/s41377-025-01807-z
Longtemps abordées sous l’angle de leurs seules composantes électriques, les interactions entre la lumière et la matière recèlent pourtant un autre levier essentiel, le champ magnétique, dû à la nature duale de la lumière, composée d’un champ électrique et d’un champ magnétique. Qu’il s’agisse de chiralité, de processus non linéaires ou de certaines réactions photochimiques, la partie magnétique du champ exerce une influence déterminante dans de nombreux phénomènes optiques complexes.
Dans un travail récent, une collaboration réunissant trois laboratoires français (voir ci-dessous) a mis en évidence la possibilité de contrôler, à l’échelle nanométrique, les interactions lumière-matière par le biais du champ magnétique. Alors que les approches conventionnelles se concentrent essentiellement sur le pilotage du champ électrique, les résultats de ce travail soulignent l’importance fondamentale du champ magnétique dans des processus optiques tels que les transitions dipolaires magnétiques et la luminescence. Grâce à une nano-antenne plasmonique (permettant le confinement de la lumière à des échelles nanométriques) spécifiquement conçue pour manipuler le champ magnétique, les chercheurs ont montré qu’il est possible de transférer de l’énergie optique issue de ce champ vers une nanoparticule dopée aux ions lanthanides (la famille des terres rares), en exploitant le confinement spatial assuré par l’antenne en champ proche.
Ces recherches ont été menées dans les laboratoires CNRS suivants :
- Institut des NanoSciences de Paris (INSP, CNRS / Sorbonne Université)
- Institut de Recherche de Chimie Paris (IRCP, Chimie ParisTech - PSL / CNRS)
- Institut Langevin (CNRS / ESPCI Paris - PSL)
L’expérience repose sur l’intégration d’une antenne plasmonique à l’extrémité d’une fibre optique, elle-même couplée à un microscope à champ proche (NSOM). Cette configuration expérimentale permet de positionner l’antenne avec une précision nanométrique au voisinage d’une nanoparticule d’oxyde d’yttrium dopée à l’europium. En filtrant sélectivement les longueurs d’onde d’un laser, il est possible d’exciter indépendamment les transitions dipolaires magnétiques ou électriques, établissant ainsi la possibilité de piloter l’excitation optique soit par le champ magnétique, soit par le champ électrique.
La luminescence émise par les nanoparticules sert ensuite à cartographier les densités locales d’états optiques (LDOS) électriques et magnétiques. Les chercheurs ont observé que, contrairement aux prédictions basées sur un paradigme éprouvé (le théorème de réciprocité optique), la distribution spatiale de la luminescence ne coïncide pas toujours avec les LDOS calculées. Cette différence s’explique par les chemins optiques distincts empruntés par l’excitation et l’émission, rendant inapplicable une interprétation strictement réciproque de la propagation électromagnétique dans la configuration mise en œuvre.

Ces travaux constituent donc une avancée expérimentale majeure dans le domaine de la nanophotonique, en démontrant pour la première fois la possibilité de contrôler le champ magnétique de la lumière et son interaction avec la matière à des échelles sub-longueur d’onde. Ils ouvrent ainsi de nouvelles perspectives pour l’exploitation des propriétés magnétiques du champ électromagnétique, notamment dans des applications aussi variées que l’interaction chirale, la photochimie, les dispositifs non linéaires ou l’informatique quantique. Par ailleurs, cette étude interroge de façon fondamentale la validité du théorème de réciprocité appliqué aux champs magnétiques optiques (l’invariance du signal mesuré après permutation d’une source et d’un détecteur), ouvrant la voie à des recherches futures sur les limites de ce principe dans des configurations expérimentales complexes. Ces résultats sont publiés dans la revue Light: Science & Applications.
Les résultats scientifiques de CNRS Physique
Communiquer sur son résultat scientifique à CNRS Physique
Vous travaillez dans une unité rattachée à CNRS Physique ? Vous pouvez nous proposer vos résultats marquants pour communication. Retrouvez toutes les informations dans la fiche communiquer à CNRS Physique !